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Structure-based network analysis
predicts pathogenic variants in human
proteins associated with inherited retinal
disease
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Advances in gene sequencing technologies have accelerated the identification of genetic variants, but
better tools are needed tounderstandwhichare causal of disease. Thiswouldbeparticularly useful infields
wheregene therapy isapotential therapeuticmodality for adisease-causingvariant suchas inherited retinal
disease (IRD). Here, we apply structure-based network analysis (SBNA), which has been successfully
utilized to identify variant-constrained amino acid residues in viral proteins, to identify residues that may
cause IRD if subject tomissensemutation. SBNA is based entirely on structural first principles and is not fit
to specific outcome data, whichmakes it distinct from other contemporary missense prediction tools. In 4
well-studied human disease-associated proteins (BRCA1, HRAS, PTEN, and ERK2) with high-quality
structural data, we find that SBNA scores correlate strongly with deepmutagenesis data.When applied to
47 IRD genes with available high-quality crystal structure data, SBNA scores reliably identified disease-
causing variants according to phenotype definitions from the ClinVar database. Finally, we applied this
approach to 63 patients atMassachusetts Eye and Ear (MEE) with IRD but for whomno genetic cause had
been identified. Untrained models built using SBNA scores and BLOSUM62 scores for IRD-associated
genes successfully predicted thepathogenicity of novel variants (AUC = 0.851), allowing us to identify likely
causative disease variants in 40 IRDpatients.Model performancewas further augmented by incorporating
orthogonal data from EVE scores (AUC = 0.927), which are based on evolutionary multiple sequence
alignments. In conclusion, SBNA can used to successfully identify variants as causal of disease in human
proteins and may help predict variants causative of IRD in an unbiased fashion.

As genetic sequencing has become increasingly available and less costly,
a growing number of patients with clinical presentations of suspected
genetic origin are undergoing targeted or whole-exome sequencing.
Despite improved accessibility, the genetic basis of disease for a con-
siderable proportion of these patients remains unclear following
sequencing1. Inherited retinal diseases (IRD), whereby rod and cone
photoreceptors degenerate, are a group of Mendelian disorders that
represent an important cause of vision loss2. With the advancement in

the availability of genetic testing3–6 and the lower cost of exome
sequencing, IRD is a field with increasing promise and possibility for
gene therapy interventions. However, among patients with an IRD,
~30% do not have a clear genetic basis despite classic retinal changes and
a decrease in visual and retinal function7, making them ineligible can-
didates for treatment. For these patients, additional tools are needed to
better define genetic variants that are not among the group of known
causal variants (i.e., variants of uncertain significance—VUS).
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Numerous computational tools that aim to predict the phenotype of
genetic variants have been described8–10, many of which were trained on
existing variant classifications or combinemultiplemetrics that use this type
of training data11–19. These data were limited by sparsely available
annotations20, and previous studies suggest that some of these algorithms
may also have considerable false discovery rates21,22. Furthermore, many of
these algorithms are limited by circularity, with duplication of variants in the
training and test datasets aswell as variants from the sameproteinwithin the
training and test datasets23. The clinical applicability of these approaches has
been limited as a result23,24. Another class of methods uses sequence con-
servation to estimate the likelihood that a particular variant will have a
deleterious phenotypic effect25,26. Sequence conservation is an important
feature to consider (and provides independent information from protein
structure) but can be an imperfect proxy for the functional importance of a
particular amino acid position within a protein of interest; this has been
previously demonstrated within the context of both model and human
proteins27,28 and also the human immunodeficiency virus (HIV),which has a
per-basemutation rate~104 times that of thehumangenomeand thus serves
as a model for an accelerated rate of genomic evolution29–31. Some of these
approaches also leverage recent advances inmachine learning, which results
in limited post hoc transparency regarding the basis for a particular esti-
mated probability of pathogenicity and is also subject to circularity and over-
fitting26,32. Functional in vitro assays, such as a high throughput assay for the
RHO gene, can help to characterize individual genetic variants33. However,
these crucial experiments are not always feasible on a large scale for the entire
set of patient-genotype combinations, given the need for appropriate
experimental setup, tissue-type, and readout for the particular variant of
interest.

To add to these approaches, we developed structure-based network
analysis (SBNA) which leverages the application of network theory to
protein structure datawith the goal of quantifying local residue connectivity,
bridging interactions, and ligand proximity in order to identify amino acid
residues that are topologically important29,34. Using x-ray crystallography
and cryogenic electron microscopy (cryo-EM) data, it models proteins as
networks of connected amino acids to quantitatively estimate the topolo-
gical importance of each amino acid as it relates to others in the protein,
protein complex, or protein–ligand interaction. This approach is distinct
from prior computational tools that use structural information because it is
not reliant on pre-defined secondary structure elements; rather, it analyzes
the crystallized tertiary structure of the folded protein as a network of
weighted inter-residue interactions. Additionally, this approach does not
require training on pre-labeled phenotypic data which means that it can
provide a metric that is specifically focused on first-principle structural
information. SBNAhas beenpreviously used to identify highlymutationally
constrained amino acid residues and CD8+ T cell epitopes in HIV and
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)29,35. In the
case of HIV, these epitopes were found to be preferentially targeted by
individuals able to suppress HIV replication in the absence of antiretroviral
therapy29. Within the context of SARS-CoV-2, highly networked regions
have resisted ongoing sequence evolution during the pandemic and thereby
may be capable of conferring broad T cell-mediated protection against
sarbecovirus infection35.

In light of these successes with highly mutable viruses, we chose to
apply SBNA to human proteins which exist within a complex system of
biological interactions. Such an application would potentially aid in better
understanding which genetic variants discovered through sequencing are
causal of disease. We first verified this approach in well-studied human
proteins: breast cancer gene 1 (BRCA1), GTPase HRas (HRAS), phospha-
tase and tensin homolog (PTEN), and mitogen-activated protein kinase 1
(ERK2). We then sought to investigate whether this approach could gen-
erate meaningful results for IRD proteins of interest to estimate the phe-
notypic impact of missense variants, given that such a sizable number of
patients with IRDs harborVUSs. Therefore, we assessed the performance of
SBNA in IRD protein-coding genes and their respective missense variants
described in ClinVar, a large public database of reported pathogenic and

benign genetic variation. Finally, we addressed a cohort of 63 affected
subjects for whoma genetic cause of their condition has yet to be discovered
to investigate the use of SBNA in real-world clinical scenarios.

Results
Structure-based network analysis accurately identifies mis-
sense variants in human proteins associated with in vitro loss of
function and pathogenic clinical phenotypes
To evaluate whether SBNA could be meaningfully applied to human pro-
teins, we first applied the approach to four well-studied human proteins—
BRCA1, HRAS, PTEN, and ERK2—which were selected for analysis due to
the availability of high-quality structural data. In addition, these proteins
had published in vitro saturation mutagenesis experiments, which allowed
us to extract the functional consequence of all missense variants and
quantifymutational tolerance36–39.We next generated network scores for all
amino acid residues in the available protein databank (PDB) files (Fig. 1a)
and evaluated the correlation with mutational tolerance (Fig. 1b). All four
proteins showed a strong inverse correlation between mutational tolerance
and network score, which was consistent with previous findings for viral
proteins and other model proteins29. Of note, only 17% of BRCA1 has been
crystallized (the N- and C-terminal ends), but SBNA scores still performed
reasonably well (Spearman correlation coefficient −0.514, p = 3.45e-22)
despite limited structural data.

We next compared network scores to pathogenicity categorizations
derived fromhumandatausing theClinVar andgnomADgenetic databases
for these same four proteins (Fig. 1c). Missense variants in all subsequent
analyseswere categorizedwith respect tohumanclinical data in linewith the
American College of Medical Genetics and Genomics/Association of
Molecular Pathology (ACMG/AMP)24 as benign (encompassing “benign”
or “likely benign” within ClinVar), VUS or pathogenic (encompassing
“pathogenic” or “likely pathogenic” within ClinVar). We restricted our
analysis to ClinVar missense variants with at least two-star level evidence,
and gnomAD was used to identify additional relatively benign missense
variants (variants with at least 250 alternative allele counts across 100,000
individuals). Across all four proteins, network scores assigned to pathogenic
variants were significantly greater than those assigned to benign variants
(median network scores for benign missense variants −0.936 and patho-
genic variants 0.866, p = 1.836e-5, Fig. 1c). Scores assigned to VUSs fell in
between those assigned to benign and pathogenic variants. These trends
were observed consistently within individual proteins, though smaller
sample sizes limit statistical power (Fig. 1d). Overall, network scores cor-
relatewith available clinical phenotype data for the fourwell-studied human
proteins (Spearman correlation coefficient 0.228, p = 2.116e-23), suggesting
that SBNA can be meaningfully applied to human proteins. Of note, we
found that SBNA seems to capture structural properties beyond simple
solvent accessibility (i.e., proximity to the core) because relative solvent
accessibility (RSA) scores show less correlation with mutational tolerance
scores than did SBNA (Supplementary Fig. 1).

SBNApredicts variants in IRDgenes associatedwith pathogenic
clinical phenotypes
Having validated SBNAon four canonical, well-studiedhumanproteins, we
then applied SBNA to additional human proteins. We analyzed the rela-
tionship betweennetwork scores andpathogenicity designations fromhigh-
quality ClinVar variants and benign gnomAD variants for the 47 human
genes associated with IRDs, for which high-quality structural data is avail-
able for the encoded protein. This dataset includes bothmembrane proteins
(e.g., ABCA4 and RHO) as well as cytoplasmic proteins (e.g., RPE65 and
RPGR) (Supplementary Table 1). We found that pathogenic variants were
assigned significantly greater network scores compared to both benign
variants and VUSs (median benign −0.841, median VUS −0.188, median
pathogenic 0.947 p = 3.140e-29 for benign vs. pathogenic, p = 1.753e-60 for
VUS vs. pathogenic; Fig. 2a and Supplementary Fig. 2), which is similar to
the pattern observed for the canonical human proteins. Because the number
of high-quality ClinVar entries for missense variants in each of the 47 IRD-
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associated proteins varies considerably (Fig. 2b), we wanted to evaluate
whether the difference between median benign and pathogenic network
scores remained statistically significant even for proteins with limited var-
iant data available in ClinVar. We grouped proteins by the amount of
available high-quality entries in ClinVar and calculated the difference
between the median benign and pathogenic network scores across each
group of proteins. The magnitude of these differences was robust in the
setting of differing levels of available clinical data across genes and was
detectable down to 40 high-quality entries per gene (Fig. 2c).

Incorporating network scores and BLOSUM62 scores success-
fully predicts variant pathogenicity
To move from aggregate statistics to prediction of pathogenicity using
network scores, we constructed a modified score that incorporates not only
the SBNA network score but also the degree of chemical and side chain
dissimilarity between the reference and mutant amino acid at that position
(since missense variants vary in this regard). To capture the latter effect, we
subtracted the BLOSUM62 matrix score from the SBNA score (which we
will now refer to as the modified SBNA score) to allow for a distinction

Fig. 1 | Residue network score correlates with mutation intolerance and distin-
guishes pathogenic variants from benign variants in well-studied human pro-
teins. a Structural representations show network scores at each residue. Sphere
radius and color corresponds to network score magnitude at a particular position.
b Comparison between functional data from saturation mutagenesis experiments
and network scores, with Spearman correlation coefficients and p-values displayed

for each plot. Points are colored based on available clinical phenotype data. c Pooled
comparison between network scores for variants with available clinical phenotype
data for all four well-studied human proteins. d Individual comparisons between
network scores for variants with available clinical phenotype data for all four well-
studied human proteins.
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between non-conservative substitutions (e.g., ILE→TRP) and conservative
ones (e.g., ILE → LEU)40. BLOSUM62 scores for non-synonymous sub-
stitutions range from−4 to 3, while 95%of the rawSBNAscores range from
−2.88 to 4.97; thus, the two metrics are on similar scales and can be com-
bined with simple subtraction. We then calculated receiver operating
characteristic (ROC) curve statistics for high-quality ClinVar variants and

benign gnomAD variants based on the modified SBNA score. Modified
SBNA scores predicted variant pathogenicity (AUC 0.851) and out-
performed network scores alone, BLOSUM62 scores alone, and RSA scores
alone (Fig. 3a, b and Supplementary Fig. 3).We testedmultivariable logistic
regressionmodelingwith 500 iterations of a 70/30% train-test split aswell as
a leave-one-out approach using the labels derived from high-quality Clin-
Var and gnomADvariants and found similar performance to the raw scores
(AUC 0.835, Supplementary Figs. 3, 4). Given the advantage that using the
raw scores has over a trained approach (which can be subject to poor
phenotypic labeling and data circularity20,23), all downstream clinical
applications described here use the raw modified SBNA score.

Comparison of SBNA to existing methods reveals similar per-
formance without dependence on phenotype labels or evolu-
tionary sequence data
We set out to compare SBNA to three tools that are built from different
underlying data: Polyphen2, AlphaMissense, and EVE. Polyphen2 is a
widely used computational prediction tool for variant pathogenicity41. It
is important to note however that PolyPhen2 is used by theACMG/AMP
to assess pathogenicity designations in databases such as ClinVar and
HumDiv, so using ClinVar as ground truth might overestimate the
performance of PolyPhen2. AlphaMissense32 incorporates structural
data from AlphaFold242, protein language modeling, and evolutionary
multiple sequence alignments into a machine-learning model using
ClinVar labels to train. Similar to PolyPhen2, there is a risk of over-
fitting and circularity with AlphaMissense. EVE is a variant patho-
genicity approach which relies only on evolutionary sequence data
rather than clinical labeling for model training and is thus not subject to
circularity, similar to SBNA26. EVE performs well on two of the well-
studied human proteins (Spearman correlation ranging from−0.478 to
−0.513, benign versus pathogenic P < 0.05 for all; Supplementary Fig. 5);
EVE predictions are not available for ERK2. To minimize bias, all
algorithms were tested on an independent dataset of 2800 rare variants
derived from patients with an IRD who were seen at MEE, though of
note, ground truth is still determined using the ClinVar database in
accordance with the clinical standard in the field. Thus, methods that
train on ClinVar must be interpreted with caution. The modified SBNA
scores were compared to results generated using PolyPhen2 trained on
two different datasets,HumDiv andHumVar12,41, as well as EVE scores26.
All methods showed a significant difference between benign and
pathogenic variants, and the modified SBNA scores correlated with the
scores from othermethods (Supplementary Figs. 6A, B, 7A, B, Spearman
correlation coefficient range 0.510–0.571, p < 5e-24 for all). With a
threshold of 1.5 for modified SBNA scores, the sensitivity was 0.548,
specificity 0.908, positive predictive value 0.963, and negative predictive
value 0.312.

ROC curves were generated by testing each of the methods on the
dataset of 2800 variants present in MEE patients (AUC range: 0.788
[modified SBNA], 0.829–0.833 [PolyPhen2], 0.819 [AlphaMissense], and
0.809 [EVE]), Supplementary Figs. 6C, 7C). The modified SBNA, Poly-
Phen2, AlphaMissense, and EVE performed similarly, though PolyPhen2

Fig. 2 | Structure-based network analysis identifies pathogenic variants in
inherited retinal disease proteins. a Pooled comparison between network scores for
variants with available clinical phenotype data for all 47 inherited retinal disease pro-
teins.bDistributionof available high-quality evidence inClinVar across all 47 inherited
retinal disease proteins. The bins reflect increasing numbers of high-quality entries in
ClinVar, and the height of each bar reflects the number of proteins in each category.
c Comparison between median benign and pathogenic network scores assigned to
variants with available high-quality evidence in ClinVar, grouped by level of available
high-quality evidence for each inherited retinal disease protein. Stars above columns
indicate statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001).
The statistical significance of the difference in network scores between benign and
pathogenic variants is lost between 20 and 40 high-quality ClinVar evidence entries.
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and AlphaMissense scores may be inflated due to training on ClinVar
pathogenicity labels.

Combining SBNA and EVE outperforms all methods individually
The correlation and prediction results suggest that structural infor-
mation and sequence conservation provide distinctly important
insight into pathogenicity, and thus, incorporating orthogonal metrics
into a single score may help to improve model correlation with phe-
notypic benchmarks. We thus sought to use the two unbiased methods
(modified SBNA and EVE). The modified network scores were scaled
and added to EVE scores to create a combined score with a range of 0 to
2 (as EVE scores fall between 0 and 1, and SBNA scores were scaled
based on the maximum and minimum values across all proteins such
that they fell between 0 and 1 before adding to the EVE scores). When
applied to the 2800 rare variants from MEE patients as well as the 47
IRD genes, this combined score distinguished pathogenicity (Supple-
mentary Fig. 7D, benign vs. pathogenic p = 3.056e-17; Fig. 3d, benign
vs. pathogenic p = 8.839e-69) and outperformed all other models with
an AUC of 0.859 (Supplementary Fig. 7E) for the 2800 variants and
0.927 (Fig. 3c) for the IRD genes. With a threshold of 1.0 for the
combination score, the sensitivity was 0.765, specificity 0.899, positive
predictive value of 0.976 and negative predictive value of 0.416. While
we note that EVE alone performed quite well (AUC = 0.915), adding
the modified SBNA improves performance and, importantly, unlike
EVE alone, offers a direct structural explanation for the mechanism
through which variation may affect phenotype.

Model incorporating the modified SBNA scores identifies puta-
tive disease-causing variants with an unclear genetic basis for
clinical disease
A significant percentage of patients with clinical presentations consistent
with IRD lack an identified genetic basis for their phenotype, and this is also
observed for patients who receive care from the Inherited Retinal Disease
Service at MEE. We therefore evaluated genetic data from 3621 probands
with a clinical diagnosis of an IRDbased on visual acuity, visual field testing,
clinical exam, fundus autofluorescence imaging, optical coherence tomo-
graphy and electroretinogram in individuals who underwent targeted or
whole-exome sequencing. Mitochondrial causes of IRD were excluded.
Missense variants of interest were defined using variant ranking software43

and residence in one of the studied 47 IRD genes. There were 2948 unique
variants identified and categorized as either “pathogenic”, “likely patho-
genic”, “VUS”, or “benign” based on a known variant consequence in the
literature using ACMG/AMP criteria44 and ClinVar designations20 (Sup-
plementary Fig. 8). Variants were further categorized in the context of
individual patients as “likely causal” if they were pathogenic or likely
pathogenic, the zygosity was consistent with known modes of inheritance,
and the clinical presentationwas consistent with the known consequence of
the affected gene. Of all the reviewed patients, 455 patients carried variants
of interest in the 47 IRD genes. Before applying SBNA, 357 were found to
have variants that were “likely causal”, while 63 patients harbored one or
more VUSs that prohibited a molecular diagnosis. The remaining 35
patients had non-missense variants or variants within a region that lacked
available structural data and were therefore excluded.

Fig. 3 | Modeling using SBNA and BLOSUM62 is superior to SBNA network
scores and BLOSUM62 scores alone. a ROC curves for network scores alone (red),
BLOSUM62 scores alone (blue), and the difference between network scores and
BLOSUM62 scores (purple). ROC curves were determined using all variants with
available clinical phenotype data for all 47 inherited retinal disease proteins. AUC
values are shown for each curve. b Pooled comparison between the difference
between network scores and BLOSUM62 scores for variants with available clinical
phenotype data for all 47 inherited retinal disease proteins. c ROC as shown in (a)

with added comparison to EVE scores (orange) and the sum of EVE scores and the
scaled difference between network scores and BLOSUM62 scores (light purple).
ROC curves were determined using all variants with available clinical phenotype
data for all 47 inherited retinal disease proteins. AUC values are shown for each
curve.dPooled comparison between the sumof EVE scores and the scaled difference
between network scores and BLOSUM62 scores (“combined score”) for variants
with available clinical phenotype data for all 47 inherited retinal disease proteins.

https://doi.org/10.1038/s41525-024-00416-w Article

npj Genomic Medicine |            (2024) 9:31 5



We generated pathogenicity predictions for the 2,948 IRD gene
variants discovered in the probands (Fig. 4a). Variants receiving a
modified SBNA score of >1.5 (calibrated using probability estimates
from the regression modeling) were deemed pathogenic. Scores were
considered in the context of the identified genetic variants in known
IRD genes for each patient with a clinical presentation consistent with
IRD. Variants were matched with any phenotypic data available in

ClinVar to roughly benchmark the pathogenicity scores. Similar to
the ClinVar analysis of IRD genes, there were observable differences
between the modified SBNA scores assigned to known pathogenic
variants as compared to benign variants and VUS/variants without
any available clinical data (benign median −1.478, VUS median
−0.656, pathogenic median 2.148; benign vs. pathogenic
p = 1.713e-30).

Fig. 4 | SBNAhelps identify pathogenic variants in patients with inherited retinal
disease. aCategorization of results from the application ofmodified structure-based
network analysis (SBNA) to a dataset of possibly solving patient variants. Results
were further subdivided into those frompatients with known putative genetic causes
of disease (b) and those from patients with only VUSs in known inherited retinal
disease-associated genes (c). d Representation of network scores for a sample
structure with putative solving genetic variants. Sphere radius corresponds to net-
work score magnitude at a particular position. A patient with clinical evidence of

ABCA4 disease (d) as evidenced by bilateral foveal pigmentary changes (arrowhead)
on color fundus photo and bilateral RPE atrophy (star) and hyper autofluorescent
flecks throughout the posterior pole on fundus autofluorescence imaging (arrows)
but with no complete genetic explanation was fully solved using SBNA which
highlighted two variants (Pro1380Leu and Arg1097Ser) that score highly in the
ABCA4 protein structure (e). Arg1097Ser was a VUS and is indicated in red within
the structure.
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For the 357 patients who harbored known pathogenic variants suffi-
cient to cause disease, themodified SBNA scoreswere concordantwith these
pathogenicity categorizations in 96.0% of cases (Fig. 4b). For the 63 patients
with VUSs as categorized by ACMG/AMP standards44 and/or ClinVar, the
modified SBNA scores offered support for a genetic cause of disease for 40
patients (23 unique variants, Fig. 4c). By contrast, EVE scores offered sup-
port for a genetic cause of disease in 25 patients (20 in commonwith SBNA),
PolyPhen2 scores trained on HumVar offered support in 33 patients (27 in
commonwith SBNA), andAlphaMissense offered support in 40patients (34
in commonwithSBNA).CombinedEVEandmodifiedSBNAscores offered
support in 23 patients (20 in common with SBNA), but this analysis was
limited because EVE does not provide scores for 15 patients. In the 15
patients wheremodified SBNA scores suggested a putative causative variant
butEVEscoresdidnot, onepatienthadavariant forwhichnoEVEscorewas
provided in the database, and the remainder had at least one candidate
variant with an EVE score below the predicted pathogenicity threshold.
Modes of inheritance included autosomal recessive (in combination with a
known pathogenic variant or a second VUS with a high estimated prob-
ability of pathogenicity; n = 15), autosomal dominant (n = 2), and X-linked
recessive (n = 5). For example, a patient with autosomal recessive ABCA4-
related disease was found to have variants p.(Pro1380Leu) (known patho-
genic) andp.(Arg1097Ser) (VUS). Thep.(Arg1097Ser) variant scored highly
(SBNA score 3.672, BLOSUM62 score -1, score difference 4.672), suggesting
it is likely pathogenic and thus completing the genetic solution for this
patient. Similarly, the VUS p.(Cys302Tyr) in RPGR was found in a hemi-
zygous patient with phenotypic findings consistent with X-linked IRD and
also scored highly (SBNA score 2.154, BLOSUM62 score -2, score difference
4.154) (Supplementary Fig. 9). For 19 patients, the modified SBNA scores
contributed towards identifying a possible but not completely solved genetic
cause, such as only one heterozygous VUS receiving a strong score. Finally,
for the four remaining unsolved patients, SBNAwas not possible due to lack
of crystal structure data for those portions of the IRD-associated proteins or
due to the presence of non-missense variants.

AlphaFold2 can improve structural coverage for SBNA
Despite evidence of strong performance when applied to IRD-associated
proteins, SBNA remains broadly limited by the availability of high-quality
structural data for proteins of interest. This structural coverage must also
overlap with the availability of high-quality phenotypic data from ClinVar,
limiting the scope of analysis (Fig. 5a). Applying AlphaFold2may provide a
path toward overcoming this limitation. For example, NR2E3 was excluded
from the set of 47 IRD genes because the only available structural data is
from a chimera formed between one domain of NR2E3 and an unrelated
bacterial protein (PDB: 4LOG). SBNA performs poorly on this non-
physiologic structure with relatively poor coverage of NR2E3 (47%) (Fig.
5b). However, when SBNA is applied to the full AlphaFold2-generated
human NR2E3 structure, performance improves considerably (Fig. 5c).

To further establish that AlphaFold2 can help to overcome the limited
availability of high-quality structural data for SBNA, we selected ten IRD-
associated genes without available structural data that had a considerable
amount of data in ClinVar (Fig. 5d). We performed SBNA on the
AlphaFold2-generated structures for these genes and found a significant
difference between the SBNA scores assigned to benign and pathogenic
variants (p = 1.201e-7; benign median −0.539, VUS median −0.491,
pathogenic median 0.076) (Fig. 5e). However, the magnitude of difference
between the median benign and pathogenic network scores was decreased
compared to SBNA performed on the structural data from the 47 IRD-
associated genes. Still, these results suggest that AlphaFold2 could poten-
tially be useful in expanding the applicability of SBNA, although it is not
clear that the quality of this analysis would be superior to that performed on
experimentally generated structural data.

Discussion
In this study, we applied SBNA to human proteins and demonstrated
that the resulting residue network scores, especially when augmented

with BLOSUM62 substitution scores, correlate strongly with mis-
sense variants that cause functional deficit or clinical disease. We
leveraged those scores, in combination with BLOSUM62 substitution
scores, to generate estimates of the likelihood that a particular mis-
sense variant was pathogenic. Using these estimates, we were able to
nominate putative genetic solutions for 40 patients with clinical
evidence of IRD. These results suggest that SBNA provides mean-
ingful insights for patients with an unclear genetic basis for their
clinical symptoms, particularly for patients with inherited retinal
diseases. Importantly, we note that this method is based purely on
structural principles rather than training on labeled outcome data,
which means that it not only provides an unbiased prediction of
pathogenicity but also the mechanism of pathogenicity (i.e., struc-
tural change) is proposed.

Numerous computational tools for the prediction of variant patho-
genicityhavebeendeveloped15,32,45–56.Virtually all of these tools use sequence
conservation and protein secondary structure or domain information.
These two categories of features can work well, especially when used in
conjunctionwith one another. However, SBNA is distinct in that it captures
the structural topology of individual amino acid residues in the context of
the protein architecture and does not rely on pre-existing annotations.
Importantly, unlike all existing tools, the performance of SBNA does not
seem to rely on a training step involving thousands of phenotype-genotype
combinations or multiple sequence alignment. As shown, the raw SBNA
score combined with BLOSUM62 (without training) achieves an AUC of
0.851 on the dataset of 47 IRD proteins. Furthermore, the biophysical basis
for SBNA scores can be analyzed on an atomic level. This transparency
facilitates downstream applications, such as the consideration of possible
gene therapy targets, and is not available withinmodels that heavily leverage
machine-learning approaches26,32. The predictive value of SBNA can be
further augmentedby incorporating EVE scores, which are ultimately based
on evolutionary multiple sequence alignments26, to achieve an AUC of
0.927. This suggests that incorporating multiple orthogonal metrics may
strengthen predictive models.

Applying SBNAmay provide additional insight into patient candidacy
for both approved and developmental gene therapy treatments. By identi-
fying candidate pathogenic variants with high confidence, SBNA could be
used tonominate a limited subset of variants for expedited in vivo validation
to fast-track delivery of appropriate therapies to patients. Broadly, the
patients thatmay benefit clinically fromSBNA fall into three categories. The
first are patients whomay be a candidate for gene-specific, variant-agnostic
therapies, such as the FDA-approved RPE65-targeted gene therapy vor-
etigene neparvovec57. This also applies to any gene with variant-agnostic
therapies in ongoing clinical trials. A second category of patients could
potentially benefit fromvariant-specific gene editing therapies, suchas those
facilitated by CRISPR-Cas9-mediated non-homologous end joining, which
are currently under development for CEP29058. The third category of
patients with IRD who may benefit from SBNA are not yet candidates for
any existing clinical therapies. However, using SBNA on a large scale to
identify candidate disease-causing variants may be informative for nomi-
nating new genes for variant-agnostic therapy development and new var-
iants for gene editing therapy development in order to maximize potential
patient benefit.

This approach is limited by the availability of high-quality structural
data, a requirement for SBNA29, though we note that any tool that proposes
to use structural data will be reliant on this. Numerous proteins, including
themajority that correspond to knowngenetic variants associatedwith IRD,
lack available x-ray crystallography or cryo-EM structures altogether. In
some cases, structures are available but are not of sufficient resolution to
facilitate downstream network analysis. Furthermore, this approach will
only be applicable to variants that result in a negative structural change.
Other types of variants – such as splice site variants – will not be captured
with this approach. However, given that this tool only requires protein
structure data, we expect that the performance of SBNA will continue to
improve. Software that leverages artificial intelligence to predict protein
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structure, such as AlphaFold2 or RoseTTAFold, have already emerged to
help compensate for the lack of available structural data42,59. We have
demonstrated that SBNA can be meaningfully applied to some of these in
silico-generated structures, which may provide a path towards overcoming
the limitation of high-quality structural data availability going forward.

In conclusion, SBNA is a new tool to estimate the likely extent of the
phenotypic impact of missense variants by assessing the topological
important of affected residues to protein structure. We demonstrated that
this technique could be meaningfully applied to human proteins and
showcased the use of SBNA in IRD patients who lack a clear genetic diag-
nosis. These types of insights could contribute to the design of novel gene
therapies targeted at implicated genetic variants57,60,61.

Methods
Structural data
All structural data were downloaded from the Protein Data Bank34. Indi-
vidual accessionnumbers for thewell-studiedhumanproteins and inherited
retinal disease proteins are listed in Supplementary Table 1. For the non-
human benchmark proteins, the same files were used as previously
described29. In cases where multiple human structures were available, the
highest oligomeric state of the protein with a resolution of ~3 angstroms or
better was used. In cases where no human structure was available, the
structure of one ormore homologswas used. Ifmultiple chainswere present
within the PDB file due to crystal packing rather than true oligomerization,
only one of these chains was used for SBNA. Solvent and water molecules

Fig. 5 | AlphaFold2 improves coverage for SBNA. a The percentages of high
confidence ( ≥ 2 stars) ClinVar variants for each of 47 IRD genes captured with
SBNA are widely distributed (blue); the per-protein percentages of solved structure
are widely distributed (orange). b NR2E3 only has structural data available for a
single domain as part of a chimera. SBNA scores for NR2E3 correlate poorly with

pathogenicity because the structure is partial and non-physiologic, but (c) the per-
formance improves when using AlphaFold2 to model the full human protein. d Ten
IRD-associated genes without available structural data were selected, and e SBNA
scores were calculated for the full AlphaFold2 structures.
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were removed from all PDB files prior to SBNA, but ligands and protein
binding partners were included in the analysis. Only the protein of interest
was designated to have a network score calculated by SBNA.

Structure-based Network Analysis
Structure-based network analysis was used to calculate network scores as
previously described29,35. The details of this method have been described
previously. As before, in cases where multiple conformations of a structure
were used, network scores were averaged for each amino acid position. In
caseswhere no human structurewas available, the structures of one ormore
non-human homologs as listed in Supplementary Table 1 were used as
templates in Modeler to generate a predicated human structure. Relative
solvent accessibility (RSA) was calculated using DSSP files62 and previously
published maximum solvent accessible surface area values63. Code to per-
form structure-based network analysis is publicly available via Zenodo
(https://doi.org/10.5281/zenodo.2597484).

Data analysis and visualization
Data analysis was performed using Python (version 3.8.2), with visualiza-
tions generated using the “matplotlib” package. Logistic regressions were
performed using the “glm” package in R (version 4.0.4). Intercepts were set
to zero for all logistic regression models. SBNA and logistic regression
results for all tested variants are available via theHarvardDataverse (https://
doi.org/10.7910/DVN/YEEPDY). Network score visualizations were gen-
erated in R (version 4.0.4) using the “rgl” package to implement OpenGL.
The backbone centroid (centroid of nitrogen, alpha carbon, and carbon)
positions were plotted along x, y, and z axes, and nodes were colored and
given sphere radii corresponding to network scores. The protein structure
backbonewas thenplotted, connecting the alpha carbons. Plotted structures
were manually rotated, and two-dimensional views of interest were
downloaded for inclusion.

Phenotype data
Clinical phenotype data was downloaded from ClinVar. Clinical evidence
with a two-gold star level designation (meaning that “two or more sub-
mitters with assertion criteria and evidence [or a public contact] provided
the same interpretation”) or better was included in the published analyses20.
Pathogenicity designations from ClinVar were binned into Benign
(“Benign”, “Benign/Likely benign”, “Likely benign”), VUS (“Uncertain
significance”, “not provided”, “Conflicting interpretations of pathogeni-
city”), and Pathogenic (“Pathogenic”, “Pathogenic/Likely pathogenic”,
“Likely pathogenic”) categories for analysis.

Additionally, allelic variation data from gnomAD64 was considered for
each gene. Loci with at least 250 available allelic variants in gnomAD were
considered benign variants. Results from ClinVar and gnomAD for each
gene were considered in combination for these analyses.

Functional data
Functional data for the four well-studied human proteins—BRCA136,
ERK239, PTEN37, and HRAS38—that had been previously published was
used for this analysis. In cases where functional scores were assigned to
multiple aminoacid variants at the sameposition (e.g., if different functional
scores were calculated for Ala101Pro and Ala101Gln), the arithmetic mean
of all functional scores at that position was used.

Patient data
Patient data was gathered from among those presenting to the Inherited
Retinal Disorders Service at Massachusetts Eye and Ear between the 1980s
and 2020s. Appropriate written informed consent was obtained from all
included patients, and approval was granted by theMass General Brigham/
Massachusetts Eye and Ear Institutional Review Board Protocol Number
2019P001098. This study was approved by the local institutional review
board and adhered to the Declaration of Helsinki. Informed consent was
obtained fromall individuals onwhomclinical data and genetic testingwere
performed.

Genetic analyses
Pre-existing genetic solutions were available for all of the 3621 IRD cases,
where genetic diagnoses for 3018 cases was obtained by targeted next-
generation sequencing approaches43 or whole genome sequencing, and the
remaining solutions were available from prior single-strand conformation
polymorphism (SSCP) analysis and Sanger sequencing. Sequence data was
aligned to the hg38 genome build, and the subsequent variant calling,
annotation, and analyses were performed as described43.

Model Comparisons
SBNAwas compared to results fromPolyPhen241 (trained onbothHumDiv
and HumVar and EVE26, with scores from both models generated as
described in their respective publications. EVE scores were downloaded
from https://evemodel.org; PolyPhen2 scores were generated using the
“batch query” function at http://genetics.bwh.harvard.edu/pph2/. To ana-
lyze the likelihood of pathogenicity, SBNA scores, EVE scores, and
PolyPhen2 scores (trained on HumVar) were calculated for a set of 2800
variants. Cutoffs for eachmodel were as follows: modified SBNA score >1.5
(corresponding to an approximate pathogenicity probability of 75% in the
logistic regression model), EVE score ≥0.65, and PolyPhen2 designation of
“probably damaging”. The “combined score” was generated by scaling
modified SBNA scores to fall between 0 and 1 based on the minimum and
maximum values across all proteins and adding them to EVE scores. A
threshold of 1.0was selected as this corresponds to the sumof theminimum
pathogenic EVE score (0.65) and the scaled version of the minimum
pathogenic modified SBNA score (1.5, which scales to 0.37) with two sig-
nificant figures.

Statistical analysis
Statistical analysis, including the generation of ROC curves, was performed
using the “scipy.stats” package in Python as well as GraphPad Prism (ver-
sion 9). Comparisons between three ormore categoriesweremadeusing the
non-parametricKruskal-Wallis testwithDunn’s post hoc analysis corrected
for multiple comparisons with a Bonferroni correction. Comparisons
between the two categories were performed using the non-parametric
Mann–Whitney U-test. The correlation between the two datasets was cal-
culated using non-parametric Spearman correlation coefficients. Spearman
correlation coefficients between network scores and ClinVar pathogenicity
designations was calculated by assigning 0 to benign variants, 1 toVUS, and
2 to pathogenic variants.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
ClinVar, gnomAD, and Protein Data Bank data were publicly available and
can be accessed using the gene names and unique identifiers in Supple-
mentary Table 1. Patient data from Massachusetts Eye and Ear cannot be
shared publicly as specified by the Institutional Review Board due to con-
cerns regarding possible identifiability of patientswith relatively rare genetic
conditions. Qualified researchers may be able to access the data via colla-
boration and data usage agreement by contacting the corresponding author.

Code availability
Code to perform structure-based network analysis is publicly available via
Zenodo (https://doi.org/10.5281/zenodo.2597484).
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